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Abstract. Secondary structure formation is an important factor influencing the behaviour of
many types of naturally occurring RNA molecules. RNA secondary structure also provides
an example of a disordered system showing frustration and a rugged energy landscape with
many alternative ground states. We use a numerical method to estimate energy barrier heights
between a set of alternative ground-state structures of a given sequence. Both the mean barrier
height and the maximum barrier height for a given sequence scale with a sequence length
N approximately asN1/2. The matrixh of barriers is exactly ultrametric, which means that
structures form an exactly hierarchical set of clusters based on barrier heights. The matrix of
distancesd between structures is correlated withh, but with large fluctuations. Hence, the
d matrix is approximately ultrametric, but the clustering of structures based on distances is
not perfectly hierarchical. Certain base pairs are observed to be present in every ground-state
structure. These ‘frozen’ pairs divide the molecule up into mutually inaccessible pieces. All
of the separate pieces contribute to determining the distance between structures, but only the
largest piece will contribute to the barrier height. The length of the largest piece varies between
sequences, and scales in proportion toN on average. We compare these results with studies of
other disordered systems, and discuss the consequences for the folding of naturally occurring
RNAs.

1. Introduction

RNA is a molecule of fundamental biological importance, which plays a large number of
roles in living cells. Molecules consist of sequences of A, C, G and U bases which can fold
to form secondary structures by forming base-paired helical regions between complementary
parts of the same sequence. Possible complementary pairs are GC, AU and the weaker pair
GU. Many alternative low-energy folded configurations are possible for any given sequence.
Algorithms are available to predict the minimum free energy (MFE) secondary structure of a
sequence using dynamic programming [1–5]. These algorithms build up the MFE structure
and the partition function recursively starting from small subsections of the sequence. The
free energy parameters for all the possible structural motifs are derived from experimental
measurements on short RNA oligomers [6].

Our previous work has focused on the thermodynamic properties of RNA [7, 8] and
on the influence of kinetics in the folding process [9, 10]. In this paper we study the
statistical physics of random RNA sequences. Random heteropolymers have attracted
the interest of statistical physicists, since they are examples of disordered systems with
interesting thermodynamic behaviour at low temperatures [11–15]. Recently we studied
an RNA folding model with deliberately simplified energy rules which has many different
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ground states [16]. The distribution of overlaps between states was found to be broad at
low temperatures, and when triplets of states were considered there was evidence for an
ultrametric correlation in the distances between states. These properties are similar to those
seen in spin-glass models [17].

Ultrametric clustering of states (as measured by distances or overlaps) is usually thought
to indicate the presence of large energy barriers between different low-energy states. In most
disordered systems it is very difficult to measure these barrier heights directly. It is instead
necessary to perform Monte Carlo simulations for very long time periods and attempt to
estimate relaxation times. The largest barrier height crossed during relaxation, scales as the
log of the longest relaxation time. Rugged landscape problems are likely to be glass-like at
low temperature by their very nature, and this will make simulations of this type difficult and
time-consuming. Here we show that in the simplified RNA folding model which we use, it
is possible to obtain a good estimate of the distribution of barrier heights between ground
states and the way in which heights scale with sequence length. Barriers are estimated
directly rather than by the use of kinetic simulation.

2. Definition of the model

We study random RNA sequences composed of A, C, G and U bases with equal probability.
For simplicity only AU and CG pairs are permitted. Each pair contributes an energy of
−1 unit, irrespective of its position in the structure, and there is no penalty for loops.
This model was originally considered as a model for RNA secondary structure prediction
before more sophisticated energy parameters were introduced [1]. The topological rules
that determine which structures are allowed are the essential feature that create the rugged
landscape in this model, causing frustration between competing base pairs. Leti, j, k and
l be the positions of four bases in a sequence numbered from 1 toN , such thati and j
can form a pair andk and l can also pair. There are three non-equivalent possibilities for
the order: i < j < k < l, i < k < l < j , and i < k < j < l. In the first two cases the
pairs are permitted to occur simultaneously, in which case we call them compatible. The
third case is known as a pseudoknot, and is disallowed here and in most other work on
RNA, since these structures are relatively rare in real RNAs, since current recursive MFE
algorithms cannot deal with pseudoknots. Any base pair must also satisfy|j − i| > 4,
which guarantees that there are at least three unpaired bases in a hairpin loop. We wish to
calculate the partition function, which is a sum of the Boltzmann factors of all structures
satisfying the above rules.

Let Zij be the partition function for the section of chain from basesi–j inclusive. Let
εij be the energy of the bond between basesi and j , which is−1 if the pair is AU or
CG, and+∞ otherwise, and letaij = exp(−εij /T ), which is either exp(+1/T ) or zero.
The full partition functionZ1N can be calculated recursively at any given temperatureT ,
beginning withZii = Zi,i−1 = 1 for all i, and using the following formula forj > i,

Zij = Zi,j−1+
j−4∑
h=i

Zi,h−1Zh+1,j−1ahj . (1)

The time required is O(N3). The recursions for calculating the partition function when the
full set of energy parameters is used are more complicated [3] but are still O(N3).

Table 1 shows the way in which several properties of this model depend on the chain
lengthN . The ground-state energyE0 is proportional toN , whilst the total number of
states� and the number of degenerate ground statesω both increase exponentially withN .
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Table 1. Dependence of the mean ground-state energy, the total number of states per sequence
and the mean number of ground states per sequence on sequence lengthN . The overbar indicates
an average over random sequences. These figures were estimated by using linear regression on
data obtained numerically withN in the range 50–400.

Quantity Fitting function Parameters

Ground state energy E0 = C1 + εN C1 = 2.9(±0.2)
ε = −0.368(±0.001)

Total number of states lnω = C2 + αN C2 = −5.6(±0.4)
α = 0.533(±0.001)

Number of ground states lnω = C3 + βN C3 = 1.75(±0.2)
β = 0.068(±0.001)

A typical chain of length 200 has approximately 5× 106 ground states and there are about
70 base pairs in each ground state.

In a previous paper [16] it was shown that one the partition functionsZij are known
for each subsection of the chain, it is possible to generate a configuration at random with
a probability equal to its Boltzmann weight. If this method is applied at zero temperature
then only ground states are generated. In this paper we use the same method to generate a
random set of ground states, and barriers will be estimated between every pair of states in
this set. Clearly we cannot generate every possible ground state but since the set we use is
generated at random the properties of the states examined should be representative of the
complete set of ground states.

We note that structure A can be represented by a set of integers{bAi }, wherebAi = j
andbAj = i if basesi andj are paired, andbAi = 0 if basei is unpaired. As a measure of
the distance between two structures A and B of the same sequence we definedAB to be the
number of bases for whichbAi 6= bBi (hencedAB is an integer in the range 0–N ).

Having calculated the partition functionZij the probability that basesi andj are paired
at equilibrium is

pij =
aijZi+1,j−1Z

ends
ij

Z1,N
(2)

whereZends
ij is the partition function for the sum of all states which can be constructed from

the two ends of the sequence, from 1 toi − 1 and fromj + 1 toN . This can be calculated
from the following recursion:

Zends
ij = Zends

i−1,j +
i−5∑
h=1

Zends
hj ah,i−1Zh+1,i−2+

N∑
h=j+1

ai−1,hZ
ends
i−1,hZj+1,h−1 (3)

using the initial conditionsZends
1j = Zj+1,N andZends

iN = Z1,i−1. The probability that basei
is unpaired is

pi,0 = 1−
N∑
j=1

pij . (4)

The mean Boltzmann weighted distance between all pairs of structures for a given sequence
is related to thepij ’s in the following way:

〈d〉 = N −
N∑
i=1

N∑
j=0

p2
ij . (5)

Applying this equation atT = 0 gives the mean distance between alternative ground states.
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3. Method of estimating barriers

We will define neighbouring configurations as configurations which differ by either the
addition or removal of a single base pair. For any given pair of ground states there are
many routes through neighbouring configurations by which the molecule can get from one
to the other. We will define the barrier1E associated with a given route between two
ground states A and B as the difference between the ground-state energy and the maximum
energy of all the configurations on the route. We are interested in the most probable route
from A to B, which for sufficiently low temperature will be the one with the lowest barrier,
since the probability of getting over the barrier is proportional to e−1E/kT . Let hAB be the
minimum value of1EAB for all possible routes, i.e.hAB is the highest point on the lowest
route.

The number of base pairs in a ground state isPtot, which varies from sequence to
sequence, but increases proportionally toN on average. For any two ground states, A and
B, we can writePtot = PS+ PD, wherePS is the number of shared pairs (i.e. those which
are in both A and B) andPD is the number of distinct pairs (those which are in A and
not in B, or vice versa). We define a direct route from A to B as one which only involves
addition and removal of distinct pairs. There will be a set ofPD pairs present in A which
must be removed and a different set ofPD pairs present in B which must be added. There
are thus 2PD steps along a direct route. We define the direct route barrierhDir

AB between A
and B as the minimum of1EAB for all possible direct routes.

Indirect routes are those which do not satisfy the above criteria. An indirect route may
involve removal of some of the shared pairs along the route, which will then have to be
added again as the configuration approaches B. It may also involve addition of extra pairs
which are present in neither A or B. These will have to be removed again at a later stage.
There are far more indirect routes than direct ones, and indirect routes always have more
than 2PD steps.

We begin with the problem of finding the optimal direct route, and its barrierhDir
AB. If

we label the pairs in A to be removed from 1 toPD and those in B to be added from
PD+ 1 to 2PD then a direct route can be written as a permutation of these integers. Not all
of the (2PD)! permutations are valid routes however, since some will attempt to add pairs
before the corresponding incompatible pairs have been removed (see figure 1 route (i)).
Also some routes will reach excessively high energies because they remove a lot of pairs
early in the route (e.g. route (ii)). A way of creating ‘reasonable’ routes which are valid
and not excessive is to begin with a permutation of the pairs to be added (as shown in (iii)
and (iv)), and to slot in the pairs to be removed at the latest possible point, so as not to
make the route invalid. It is clear that the optimal direct route is one of these reasonable
routes.

There are onlyPD! reasonable routes rather than(2PD)!, however, this is still too large
for exact enumeration for long sequences sincePD scales asN . The problem of finding the
best direct route is similar in nature to the travelling salesman problem [18], for which the
number of tours increases as the factorial of the number of cities visited. We did not find an
exact solution to the direct route problem, but we used the following heuristic procedure,
which we believe finds the optimum route in most cases.

For each of thePD pairs in B to be added a list is made of those pairs in A which are
incompatible with it, as shown in figure 1. An initial estimate of the direct route barrier is
obtained as follows.

(i) Find the pair in B which has the least number of incompatible pairs in A. If there
are several pairs in B with an equal number, choose one randomly.
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Figure 1. Two ground states for a sequence withPtot = 5, PS = 0 andPD = 5. Barriers for
several possible routes are calculated. Base pairs in the structures are numbered, and the routes
show the order of removal and addition of paris to convert A into B.

(ii) Remove the incompatible pairs from A, and add the new pair to the structure. If
there are any other pairs from B that can be added to the structure at the same time, then
add these. This creates a new intermediate structure A′.

(iii) Record the energy of the maximum point reached on the route so far.
(iv) Repeat this procedure with A′ instead of A, until the intermediate structure is
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Figure 2. Effect of clustering the barriers using the SLC method. The final set of barriers is
ultrametric.

transformed into the final structure B.
In figure 1, route (iii) is constructed by this method. Since step (i) of the method

sometimes involves random choices, it is necessary to repeat the method a number of times,
making different random choices, and following each new route only as long as the barrier
height along the route so far is less than the best estimate forh found so far. In most cases
there are only a few choices at each step, and the estimate forh converges after relatively
few iterations.

The method above is a ‘greedy’ algorithm, similar to those used in problems such as
the travelling salesman problem. In that problem a greedy algorithm is usually found to
give a good first estimate of the minimum route length between cities, but is not guaranteed
to find the optimum. Here we also found that the greedy algorithm did not always give the
lowest estimate for the barrier height. Therefore, after using the greedy algorithm above,
we used the following modified method in an attempt to improve the result. The modified
method consists of simply choosing a pair from B at random and removing those pairs from
A which are necessary in order to add this pair, otherwise it is the same as before. Since
there are no constraints on the route chosen, this method is guaranteed to find the lowest
barrier route eventually. The modified method was carried out a few hundred times for
each pair of structures. Each trial route was followed only as long as the barrier reached so
far did not exceed the minimumh found from previous routes. In this way, time was not
wasted following very poor routes.

As stated above, indirect routes involve either adding pairs which are later removed or
removing pairs which are later added again. In practice, it was found that indirect routes
often had lower barriers than direct ones, and therefore it was necessary to consider indirect
routes. A set of ground-state structures was generated andhDir

AB was estimated by the above
method for every pair. We then considered indirect routes that were formed by linking
direct routes. For example in figure 2 indirect routes from A to D include ABD, ACD
and ABCD. The barrier for one of these indirect routes is the largest barrier encountered
along the linked direct routes. The optimum indirect route in this case is ABCD which
has a barrier ofhAD = hDir

BC = 4. The algorithm for calculation of the optimum indirect
routes is known as the single link cluster (SLC) method in numerical taxonomy, and is well
described by Sneath and Sokal [19].

The matrix of true barriers between ground statesh is ultrametric by its definition, that
is it satisfieshAB 6 max(hAC, hCB) for every triplet of states A, B, and C [20]. The matrix
of direct barriers is symmetric(hDir

AB = hDir
BA) but is not necessarily ultrametric. By usinghDir

as the input to the SLC method we obtain an output matrixhest which is exactly ultrametric
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and which is our best estimate of the trueh matrix. Clearlyhest is an upper bound on the
trueh, because:

(i) the input values ofhDir are themselves upper bounds which were estimated by a
heuristic procedure;

(ii) only a finite set of ground states can be considered in the matrix (typically 200),
whereas the total number of ground states increases exponentially withN ;

(iii) there are possibly some indirect routes which cannot be decomposed into linked
direct routes.

Nevertheless, we believe that in practice our method gives a good approximation to the
true h values since the SLC method is very tolerant of errors in the input. For example if
hDir

AB had been overestimated as 7 instead of 6 in figure 2 then it would make no difference
to the outcome(hest

AD = 4). The procedure for estimatinghDir is unlikely to make mistakes
with low barriers, since it converges quickly to a value which is not significantly improved
on by further trial routes. It is the pairs for whichhDir

AB is estimated as being unusually
high which have a greater possibility of being overestimates. These high values tend not
to contribute to the finalhest as shown above. We performed several tests on our results in
order to check if the method was giving good estimates ofh. These are described in the
results section.

4. Results

4.1. Barrier heights

In this section we estimate the average barrier between ground states, defined as the mean
of hAB for all pairs of ground state structures, and the maximum barrierhmax, which is the
largest element of thehAB matrix. Since these quantities fluctuate from one random sequence
to another it is necessary to average them over sequences. These sequence averages will be
denoted〈h〉 andhmax. This was done for 30 sequences each for various sequence lengths
from 50 to 850 bases. For each base sequence used, two sets of 200 ground-state structures
were generated, and for each of these two sets the best estimate of theh matrix was found
using the clustering algorithm. Two separate sets were considered in order to estimate the
reliability of the method. An estimate of the random error in〈h〉 was calculated using the
difference between〈h〉 for the two sets of structures used, and found to be about 2% on
average. As a further check on statistical error it is possible to measure the mean distance
between all pairs of ground states in the set, and compare this with the exact answer which
is calculable from the pair probabilities (see equation (5)). These were found to agree within
the same error margin as before.

If more ground-state structures are included in the clustering method there will be a
larger number of indirect routes considered, thus the chance of finding low barrier routes
(if these exist) will increase. Using 400 structures instead of 200 increases the number of
direct routes considered by a factor of 4, and enormously increases the number of indirect
routes. However, it was found that the average barrier was only decreased by about 5%
for a few examples at the largest sequence lengthN = 850 (it was not possible to test
more than a few examples due to the computer time that would be required). The decrease
will be lower for smaller sequence lengths because the direct routes are not so likely to be
overestimated, as there are not so many possible routes. Hence we believe that using 200
structures is sufficient to obtain a reasonable estimate, even for the largestN value.

Figure 3 shows the values of〈h〉 andhmax against the sequence lengthN on a log–log
scale. For each of the individual sequences there was no significant difference between the
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Figure 3. The bottom curve shows the average barrier between all pairs of structures in the
set of 200, averaged over all sequences, for a range of sequence lengths. The top curve is
the maximum barrier averaged over all sequences for each length. The dotted lines are best fit
straight lines from which the scaling laws for the average and maximum barriers are obtained.

value of 〈h〉 estimated from the two separate sets of states, although fluctuation between
sequences was considerable. In some cases, the value ofhmax differed between the two
separate sets for the same sequence. This is noticeable becausehmax is always an integer.
When this occurred, the lower of the two values was taken as thehmax for that sequence.
An average over sequences was then calculated. From the gradient of the graphs we can
estimate that〈h〉 scales asN0.42, and the maximum barrierhmax∼ N0.50. There are several
sources of error in the estimation of the exponents. Statistical error is of course present
due to the limited number of sequences examined at each length, and the limited number
of structures considered for each sequence. The estimates of the statistical errors in the
exponents obtained from the least-squares fitting routine were quite small, however (about
±0.02). For reasons which we discuss below, we expect these two exponents to be equal.
The apparent difference between the two estimates suggests that there are uncertainties of
the order of±0.05. These are due to finite-size effects in theN = 50 point (removal of
this point leads to slight changes in the estimate), and a possible systematic overestimation
in h values (which would affect the largeN points most).

In previous work on this model [16] the distribution of distances between structures
was investigated. It was found that this distribution was broad at low temperatures even
for long sequences, and that there was some evidence for ultrametric clustering of states
based on the distance values. In models of disordered systems it is usually assumed that
clusters of states which are far apart in distance will be separated by a high-energy barrier,
and hence that transitions between these states will be very slow. In many simulations
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Figure 4. The average distanced(h) between all pairs of structures which have an energy
barrier ofh. It can be seen that there is a strong correlation betweenh andd(h). The dotted
lines are best fit straight lines which have been added as a guide to the eye.

of disordered systems it is easy to look at distances between sets of states generated by a
technique such as Monte Carlo simulation or simulated annealing, as was done in the SK
model [21] and a protein folding simulation [22] for example, but it is not straightforward
to define barrier heights. Alternative models assume the presence of a tree-like hierarchy of
states and consider diffusion of a particle between these states [23–25]. In this case there is
a clear definition of barrier heights and dynamics, but there is no notion of distance between
states, or of what structure is actually represented by the states. In the RNA model studied
here we have a clear definition of both distances and barriers between alternative states,
and both are accessible numerically. It is therefore of interest to ask how the barriers and
distances are correlated.

Figure 4 shows the functiond(h), defined as the mean distance between pairs of
structures having a barrierh, after averaging over sequences and over pairs of structures
for each sequence, i.e.

d(h) =
∑

Sequences

∑
A

∑
B dABδ(hAB, h)∑

Sequences

∑
A

∑
B δ(hAB, h)

(6)

whereδ(hAB, h) = 1 if hAB = h, and zero otherwise.
For any sequence lengthN it can be seen thatd(h) increases withh, indicating a clear

correlation between distances and barriers. The dotted lines on the figure are best-fit straight
lines shown as a guide to the eye. The relationship does seem to be roughly linear. Note
that d(h) is only defined over the range ofh which actually occurs in the sequences of
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Figure 5. Matrix representation of the barriers between each structure in the set for a sequence
of length 450. The lighter the shade of grey, the higher the barrier between two structures. The
structures are arranged in order on each axis so that the clusters of similar barriers obtained
from the SLC algorithm can be clearly seen. This matrix is exactly ultrametric.

each of the lengths studied. The points at highh values for each of the curves in figure 4
represent average distances between very unusual pairs of structures which happen to have
much higherh and d values than normal. Only a small fraction of sequences will have
structures separated by these highh values.

A further illustration of the correlation betweend andh is shown in figures 5 and 6.
For one typical sequence of length 450 the best estimate of theh matrix was obtained using
the SLC method. The SLC method gives a natural ordering of states so that closely related
states are consecutive. Theh matrix is plotted in figure 5, with the states in the appropriate
order, using a grey scale so that lighter shades of grey represent higher barriers. The result
is a well-defined hierarchical system of clusters. Figure 6 shows the matrix of distances
between the same set of clusters as in figure 5, and with the same ordering of structures.
Many of the main features of theh matrix can also be seen in the distances, although the
cluster pattern is much less clear. Figure 6 looks like figure 5 with ‘noise’ added.

In a previous study [16] clustering patterns were shown for thed matrix, but theh
matrix was not then available. If thed matrix is clustered directly (as was done in [16])
then a slightly different pattern results because the ordering of structures which optimizes
clustering of thed matrix is not precisely the same as that which optimizes the clustering
of the h matrix. It is the clusters which emerge from theh matrix which are the more
meaningful because they are precisely ultrametric. The ultrametric inequality (see section 3
and [20]) leads to the isosceles triangle property: that the two largest of the threeh values
for any triplet of states must be equal. It is clear that this must be true for the energy barriers
as we have defined them, since one possible route from A to B is to go via C, and the barrier
associated with this result is just max(hAC, hCB). This is because the route returns to the
ground-state energy on reaching the intermediate state C (or any other intermediate ground
state). There is no reason why thed matrix should be precisely ultrametric, but sinced
andh values are quite strongly correlated, thed matrix still appears to be approximately
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ultrametric. This confirms the results of [16], where triplets of distances were tested for
the isosceles triangle property. It was found that the difference between the two largest
sides was smaller than would be expected by chance, indicating an approximate degree of
ultrametricity in thed values.

We wish to stress that even though theh matrix is ultrametric by definition, the
hierarchical cluster pattern seen in figure 5 is non-trivial. The results of figures 3–5 taken
together show that there is a broad range of barrier heights for anyN , and that the mean
barrier increases withN . A trivial example of ultrametricity would be obtained by setting
all the barriers to be equal, in which case the inequality would be satisfied, but there would
be no hierarchy of clusters. The distance matrix becomes trivially ultrametric in this way
for most disordered systems at high temperature [16, 22]. It is also worth pointing out that
whatever input matrix is used for the SLC method, the output matrix is always exactly
ultrametric. However, this does not mean that the SLC method can create a hierarchical
structure ‘out of nothing’. If the input matrix has no hierarchical structure within it (e.g. a
random matrix) the output matrix will be trivially ultrametric.

A further feature which is seen in thed(h) measurements in figure 4 is that for any
givenh, d(h) increases withN . In other words it is possible for ground-state structures of
larger sequences to differ by a greater amount than shorter sequences without having any
greater energy barrier between them. This was the observation that led us to consider the
idea of effective length discussed below.

4.2. Pairing probability and effective sequence length

The probability that basesi and j are paired can be obtained from the partition function
(equation (2)). Examination of the matrixpij indicates that certain positions in the sequence
are much more variable in structure among all the possible equilibrium states than others.
If a basei is in a structurally variable region there will be several basesj for which pij
is non-zero, all of which are of the same order of magnitude. If a base is almost always
paired with one particular partner, then one of thepij ’s will be close to 1 whilst all the
others are almost 0. We define the maximum pairing probability for each basei as

pmax(i) = max
16j6N

(pij )

and the integrated distribution of these probabilitiesF(pmax), to be the fraction of bases
for which pmax(i) is greater than or equal topmax. The functionF(pmax), averaged over all
sequences of length 250, is shown in figure 7 at various temperatures. TheT = 0 curve
gives important information about the properties of the ground states. First, this curve covers
the whole of the range 0–1, which indicates that there are many bases with intermediate
values ofpmax. This is because there are many degenerate ground states. TheT = 0 curve
intercepts the right-hand axis at approximately 0.18, indicating that there is a fraction 0.18
of bases which are always paired to the same other base in every ground-state configuration
(pmax= 1). The curve intercepts the left axis at about 0.92, showing that there is a fraction
0.08 of bases which are always unpaired in every ground state(pmax = 0). The curves
for the other temperatures are smooth, and we expect that they are continuous at the two
boundaries, such that they do not intercept the axes. The curves shift toward lowerpmax

values at higher temperature since a greater number of alternative configurations become
accessible to each base on the sequence. A quantity analogous toF(pmax) was studied
by Derridaet al [26] in a model of directed walks with random self-interactions. There it
was shown that the curves behaved as a power law close to the limit. This behaviour was
termed ‘weak freezing’. An important difference between the directed walk model and the
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Figure 6. Matrix representation of the distances between the same set of structures as in figure 5,
with the states arranged in the same order. A clear correlation between the distances and the
barriers of figure 5 is visible.

RNA model studied here is that the former has a non-degenerate ground state whereas the
latter has multiple degeneracy. This means that theF(pmax) curve is non-trivial even in the
limit T = 0 which we are principally interested in here.

The practical consequences of figure 7 are that there are certain base pairs which are
present in all ground-state structures. We will call a base pair frozen ifpij > 0.99 at
T = 0. Frozen base pairs divide the sequence into mutually inaccessible regions because
of the constraints which disallow pseudoknots. A single frozen base pairij gives rise to
two regions in which further base pairing may occur independently: the loop fromi + 1
to j − 1, and the two ends combined (from 1 toi − 1 plus fromj + 1 to N ). We define
the effective lengthNeff of the sequence as the length of the largest region of the molecule
in which further pairing may occur without disturbing the frozen pairs. The concept of
effective length is illustrated in figure 8 for a sequence withN = 250. Structures B–D
are three ground-state structures, and A is a structure containing only the frozen base pairs
common to the ground states. Frozen pairs are marked with a thick line and the effective
length of the sequence is the length of the largest loop in structure A. In B–D, different
structures are seen in the free, unfrozen regions, but the frozen structure is the same in
each case. This allows us to explain why the distanced(h) between states with the same
barrier height increases with the system sizeN . Separate regions created by these frozen
pairs are independent of one another as far as determining barrier heights is concerned.
When the system overcomes the energy barrier from ground states A to B, each region in
A can be transformed independently into the new structure within the same region in B.
The overall energy barrier between the two structures will just be the largest of the barriers
from the independent regions, which will usually come from the region of the largest size
Neff. Hence we may expect that barrier heights will scale more closely withNeff than with
N . On the other hand, the distance between the structures is the sum of the distances for
each region, which explains whyd(h) increases withN for any givenh. Also the ‘noise’
seen in the distance matrix plot of figure 6 is caused by the variability in the structure in



Barrier heights between ground states in RNA 3165

0.0 0.2 0.4 0.6 0.8 1.0
pmax

0.0

0.2

0.4

0.6

0.8

1.0
F

(p
m

ax
)

T=0

T=0.1

T=0.2T=0.5
Fraction
of frozen
pairs

Fraction always
unpairedunpaired

Figure 7. The integrated distributionF(pmax) of the largest pairing probability for all bases
from all of the sequences for length 250. The distributions are shown for temperatures from 0
to 0.5. At very low temperature about 20% of bases in all the structures are frozen. Also about
8% of bases are never paired. At higher temperatures any base can pair with many other bases
with a fairly high probability, hence mostPmax values are small.

the smaller regions which do not contribute toh.
We calculated the effective length of all structures for each of the sequences previously

used for different values ofN . Graphs of the average and the maximum barrier for each
sequence against its effective length are shown in figures 9 and 10, plotted on a log–log
scale. Each symbol represents a single sequence, with different symbols used for eachN .
For eachN the effective length values vary greatly with sequence, but on average increase
in proportion toN . We estimate that the mean ofNeff ∼ 0.30N for largeN . For individual
sequences the average and maximum barriers correlate closely withNeff as expected. From
these graphs we estimate〈h〉 ∼ N0.47

eff , andhmax∼ N0.54
eff .

We now have four estimates for the scaling exponent which we would expect to all
be equal. SinceNeff ∼ N , we would expect the scaling of barriers withN in section 4.1
to be the same as the scaling withNeff. Also, if the highest level branch point in the
clustering hierarchy splits the states into two groups of roughly equal size, then roughly
half the elements of theh matrix will equalhmax, hence we expect the exponent forhmax to
be the same as that for〈h〉. The differences between the four exponents measured therefore
reflects uncertainty in the measurement. The four values are close to1

2 and are consistent
with 1

2 within the error range of the measurement, which is in the order of±0.05.
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Figure 8. Illustration of frozen structure at low temperature in a sequence of length
250. Structure A contains only frozen pairs, the loops representing unconstrained regions.
Structures B–D have the same frozen pairs and helices, but the unconstrained regions are paired
differently, with the largest variation occurring in the largest unconstrained region. The effective
length of this sequence is the length of the largest loop in A.
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Figure 9. Log–log plot of the average barrier height against effective length. The symbols
represent different sequence lengths as labelled. For each sequence length the range of effective
length is large, and correlates closely with the average barrier measured for each sequence. The
dotted line is a best fit of the data.

5. Discussion and conclusions

We have used a heuristic numerical procedure to estimate the energy barriers between ground
states in a model of RNA secondary structure. The model is a simplified version of the
real energy rules for RNA base pairing, but still displays disorder and frustration, necessary
features for rugged energy landscapes.

The most widely studied system displaying these properties is the Sherrington–
Kirkpatrick (SK) spin-glass model. The replica theory [17] predicts that the lowest energy
configurations of the SK model are arranged in ultrametric clusters using a distance metric in
configuration space. Numerical evidence appears to support this theory [21]. There is also
evidence for this in other complex optimization problems, such as the travelling salesman
problem [18], the graph colouring problem [27] and the graph bipartitioning problem [28], as
well as in the configuration space of proteins [22]. It has been conjectured that ultrametricity
may lie at the heart of many problems of this sort, where there are many possible competing
and nearly equally good solutions. This work shows explicitly that there are hierarchical
clusters of states in the RNA folding model which we considered. The clusters based
on barrier heights are exactly ultrametric, and those based on distances are approximately
ultrametric. None of the previous studies was able to examine both distances and barrier
heights, as we have done here.

Mackenzie and Young [29, 30] have used numerical simulations of relaxation in the
SK model to estimate the equilibrium relaxation times and hence energy barriers between
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Figure 10. Log–log plot of the maximum barrier height against effective length. The symbols
represent different sequence lengths as labelled. The dotted line is a best fit of the data. The fit
is poorer at the lower end of the line because the barriers are integers.

ground states. They obtain two distinct scaling laws for the barriers in the model,N1/4

which they call ‘non-ergodic’, andN1/2 or ‘ergodic’ barriers. The ergodic barriers are
observed to exist between a ground state and its inverse obtained by flipping all the spins,
and non-ergodic barriers are found between states with a larger overlap. The symmetry of
the SK model under reversal of all spins does not have an equivalent in the RNA model,
although the correlation betweend and h which we see shows that structures which are
very dissimilar to each other tend to have the largest barriers. We have shown here that the
barriers between ground states in the RNA model are consistent with anN1/2 scaling law
(within a fairly large error margin).

A link between RNA folding and the SK model has previously been made by Fernandez
[31] and Fernandez and Shakhnovich [32] who simulate the folding of the molecule
occurring during chain synthesis. Rearrangements of secondary structure occur principally
close to the growing end of the chain. They observed barrier heights scaling asN1/4, and
likened this to the ‘non-ergodic’ barriers in the SK model [29]. Here we are looking at
alternative structures of chains of fixed lengths, and the barriers that we measure should
correspond to the largest barriers in the energy landscape. Our results give a scaling law
close toN1/2, which is the same as that for the ‘ergodic’ barriers in the SK model, although
there is no strong argument why these models should scale in the same way. The difference
between our results and those of Fernandez indicates that the molecule only crosses relatively
small barriers during the folding process. In other words, the order of formation of different
helices is important for determining the final structure, because the molecule does not
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necessarily manage to completely rearrange its structure to find the most thermodynamically
stable configuration.

A major advantage of the RNA model as an example for the study of disordered systems
is that the partition function can be calculated exactly in polynomial time, allowing relatively
long sequences to be considered. Previous exact calculations of the partition function for the
SK model were limited toN = 20 spins [33]. Another major advantage of the model is that
we were able to obtain a direct estimate of the energy barriers between ground states without
using Monte Carlo simulation. Our algorithm for estimating the direct barriers is similar in
spirit to one used by Morgenstern [34] to estimate the energy barriers in a spin-glass model
with short-range interactions (the ‘±J model’). In that paper the barrier height between
ground states is estimated by following different random paths through configuration space.
Spins are flipped and then kept fixed until the final state is reached, while allowing any
remaining non-fixed spins to rearrange themselves to the new situation of each configuration
along the route.

In a system that is non-ergodic on physical timescales the phase point is effectively
confined in one subregion or component of phase space. Theoretical treatments of such
systems should compute thermal averages over one component at a time (Palmer [35]).
The idea of broken ergodicity and the division of phase space into components has been
developed more recently by Stein and Newman [36, 37]. We have also begun to study finite-
temperature dynamics in our RNA model. We have run Monte Carlo simulations in which
two initially identical structures are allowed to relax simultaneously at low temperature using
different sets of random numbers, and the distance between the structures is calculated as
a function of time. We are able to calculate the equilibrium average distance between
structures from the partition function, and also a restricted average obtained between all
pairs of structures within a barrier of 1. Preliminary results show that in many cases the
distance obtained by simulation agrees with the restricted average with remarkable accuracy.

The work in this paper has been presented from the point of view of statistical physics,
as an example of an interesting disordered system. We conclude by briefly discussing the
relevance of energy barriers to the properties of real RNA. First it should be remembered that
the energy parameters used for realistic structure prediction are much more complicated than
those used here, although the algorithm for the partition function is still O(N3) [3]. Both
energy and entropy parameters are included, so that the Boltzmann weights of different
structures are temperature dependent. Interactions in helices are dependent on stacking
between neighbouring pairs, hence the pairs tend to occur in long helical regions, whereas
in the simplified model used here the pairs are independent of each other. With the more
realistic rules ground states will not be exactly degenerate, but there should still be many
low-energy states of approximately equal energy. We have not developed algorithms for
barrier-height determination using the realistic energy parameters, since the details would
be much more complex, but we expect that the results would be very similar. In any
case it is clear that there is a large possibility of real RNA molecules becoming trapped in
metastable states during the folding process, since stacking free energies in helices can be
large compared with the thermal energykT . This means that finding the minimum free-
energy structure may not be the most appropriate way of predicting the structure formed in
nature. We have argued that barrier heights become large enough to affect the folding of real
RNA for molecules longer than about 100 nucleotides [10], and hence that the kinetics of
the folding process is important in many natural RNAs. Examples of RNA folding studies
from the biochemical literature are given in [9] and [10], and we will not discuss these
further here.

The thermodynamics of RNA secondary structure is important for understanding the
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folding behaviour and the function of natural RNAs. The model which we have studied
allows the clustering of states and the energy barriers between states to be investigated in a
much more direct way than has been done with most other disordered systems in statistical
physics. We expect that RNA folding models will continue to be of interest in both the
biochemistry and physics communities.
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